The Planar Tree Lagrange Inversion Formula

نویسنده

  • Lothar Gerritzen
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A One-parameter Deformation of the Noncommutative Lagrange Inversion Formula

We give a one-parameter deformation of the noncommutative Lagrange inversion formula, more precisely, of the formula of Brouder-Frabetti-Krattenthaler for the antipode of the noncommutative Faá di Bruno algebra. Namely, we obtain a closed formula for the antipode of the one-parameter deformation of this Hopf algebra discovered by Foissy.

متن کامل

A Physicist’s Proof of the Lagrange-Good Multivariable Inversion Formula

We provide yet another proof of the classical Lagrange-Good multivariable inversion formula using the techniques of quantum field theory.

متن کامل

Recent Results for the Q-lagrange Inversion Formula

A survey of the q-Lagrange inversion formula is given, including recent work of Garsia, Gessel, Hofbauer, Krattenthaler, Remmel, and Stanton. Some applications to identities of Rogers-Ramanujan type are stated.

متن کامل

Lagrange Inversion and Schur Functions

Macdonald defined an involution on symmetric functions by considering the Lagrange inverse of the generating function of the complete homogeneous symmetric functions. The main result we prove in this note is that the images of skew Schur functions under this involution are either Schur positive or Schur negative symmetric functions. The proof relies on the combinatorics of Lagrange inversion. W...

متن کامل

Pattern Avoidance in Generalized Non-crossing Trees

Abstract. In this paper, the problem of pattern avoidance in generalized non-crossing trees is studied. The generating functions for generalized non-crossing trees avoiding patterns of length one and two are obtained. Lagrange inversion formula is used to obtain the explicit formulas for some special cases. Bijection is also established between generalized non-crossing trees with special patter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005